If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5f^2-18=0
a = 5; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·5·(-18)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*5}=\frac{0-6\sqrt{10}}{10} =-\frac{6\sqrt{10}}{10} =-\frac{3\sqrt{10}}{5} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*5}=\frac{0+6\sqrt{10}}{10} =\frac{6\sqrt{10}}{10} =\frac{3\sqrt{10}}{5} $
| 3x+4=-9x+1 | | 52=2x-1+3x+5 | | 3r+3r=24 | | −2/3m-4=10 | | 4x(4x)=0 | | ⎪2a+1⎥=1 | | 5(3x+3)=5x+10 | | 3x2x=6 | | 4x3+2x+7=3(2x-1)+4x | | p−20=49 | | -2(-3x+8)=32 | | 1.2n=1.44 | | 5x+2x+2=9x+4 | | 167=(3x-79) | | n/−3-2=-18 | | x62-11x+26=0 | | 0.29x-0.25=0.44x+0.03 | | 5k+28=-7(5-2k) | | -6y+17=3y-10y | | 3(-5x+10)+7=67 | | c/−2-4=3 | | 214-y=276 | | 24-n=-8(n+4) | | −2p+18=10 | | f/8−25=−28 | | m-1/2=m+2/5 | | 2y=×+17 | | 60=5x+223 | | 13y-11=13y | | 0.6x+0.2=-1.4x-3 | | 0=4+4(m+1)* | | (x+10)^2=75 |